

4-5 Energy Changes – Chemistry

1.0 The **Figure 1** shows magnesium burning in air.

Figure 1

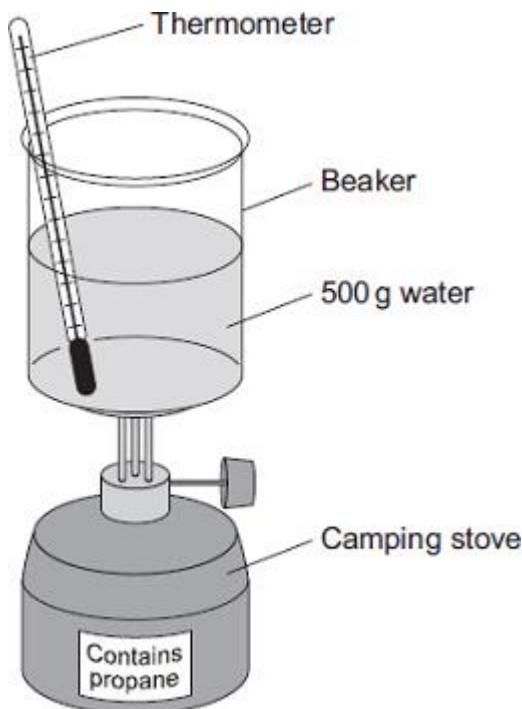
© Charles D Winters/Science Photo Library

1.1 Give **one** observation that you can make from **Figure 1** that shows that a chemical reaction is taking place.

[1 mark]

1.2 The Bunsen burner flame provides energy to start the magnesium burning.
Draw a ring around the name given to the energy needed to start a chemical reaction.

[1 mark]


Activation energy

Potential Energy

Solar Energy

2.0 A camping stove uses propane gas.

A student investigated the energy released when propane gas is burnt.

The student:

- put 500 g water into a beaker
- recorded the starting temperature of the water
- heated the water by burning propane for 1 minute
- recorded the temperature of the water after burning the propane.

Table 1 shows the student's results for the investigation.

Table 1

Starting temperature of water in °C	Temperature of water after burning propane in °C	Temperature change of water in °C
19	34	

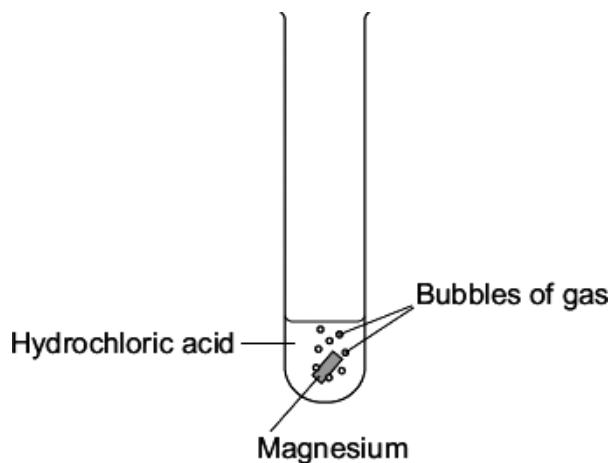
2.1 Name the instrument the student should use to measure the temperature.

[1 mark]

2.2 Calculate the temperature change of the water.

[1 mark]

Temperature change = _____ °C


2.3 Calculate the energy released in joules when propane is burned for 1 minute.
Use the equation:

energy released (J) = mass of water (g) \times 4.2 \times temperature change ($^{\circ}\text{C}$)

[2 marks]

Energy released = _____ J

3.0 A student investigated the reaction of magnesium with hydrochloric acid.

A piece of magnesium was dropped into the hydrochloric acid.

Bubbles of gas were produced and the magnesium disappeared.

3.1 This reaction is **exothermic**.

How could the student prove this?

[2 marks]

3.2 State **one** safety precaution that the student should take during the experiment.

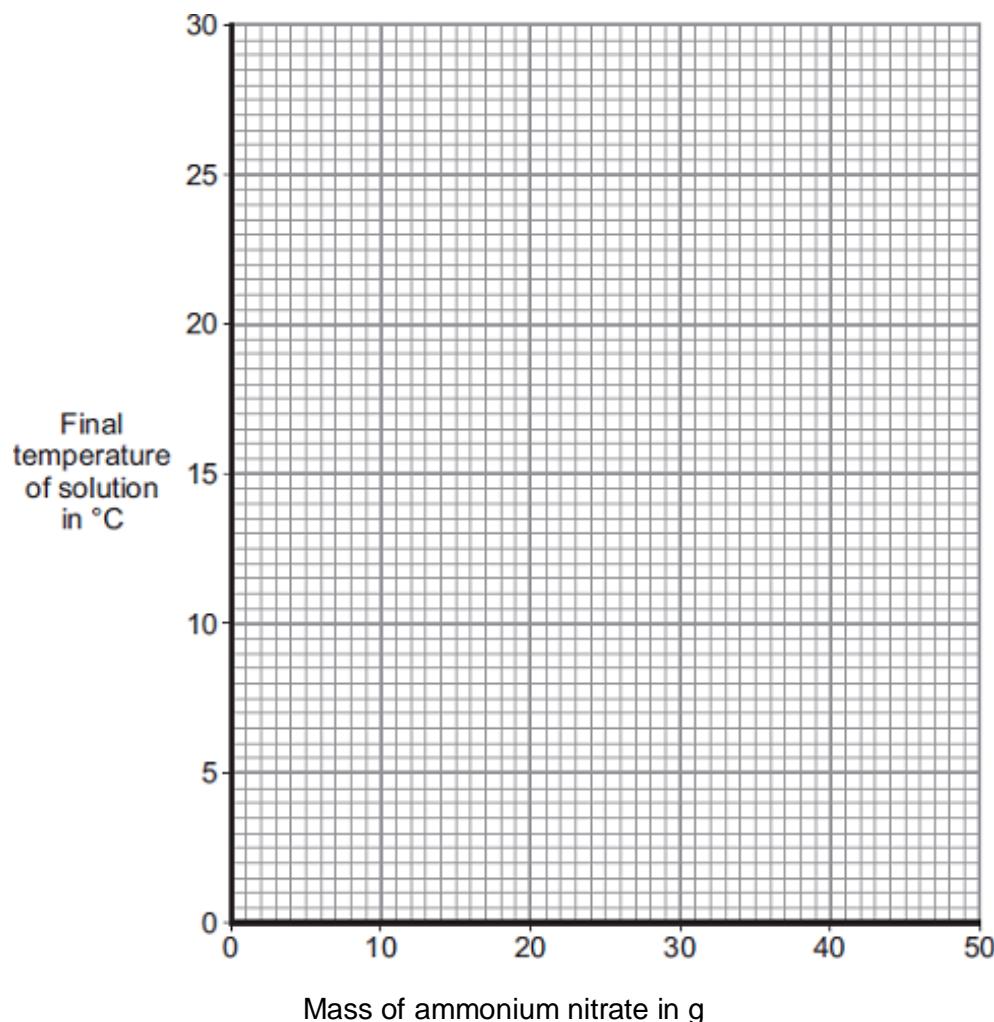
[1 mark]

3.3 How could the student tell if the reaction had finished?

[1 mark]

4.0 A student investigated how the temperature of water changed when different masses of ammonium nitrate were added to the same volume of water.

The student's results are shown in the **Table 2**.


Table 2

Mass of ammonium nitrate in g	Final temperature of solution in °C
10	15.0
15	12.5
20	10.0
25	7.5
30	5.0
35	5.0
40	5.0

4.1 Plot the results on the grid.

Draw two straight lines of best fit through the points.

[4 marks]

4.2 Use your graph to estimate the temperature when no ammonium nitrate has been added to the water.

[1 mark]

Temperature when no ammonium nitrate added = _____ °C

4.3 Suggest what the temperature of the water shows before ammonium nitrate is added.

[1 mark]

Tick **one** box.

Body temperature

Boiling point

Freezing point

Room temperature

5.0 A student investigated the energy released when different metals react with copper sulfate solution.

5.1 What is the independent variable in this investigation?

[1 mark]

5.2 What is the dependent variable in this investigation?

[1 mark]

5.3 State **two** control variables the student should keep the same.

[2 marks]

Table 3 shows the student's results.

Table 3

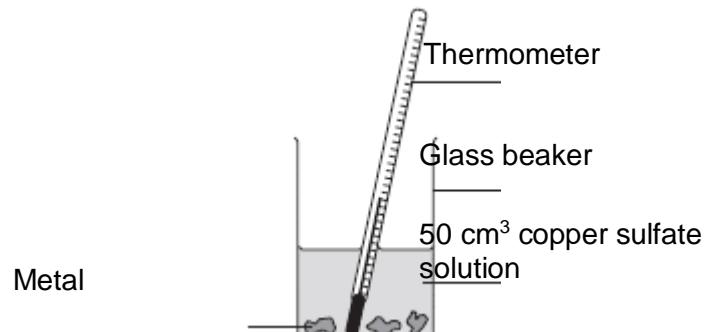
Metal	Temperature (°C)		
	Start	End	Change
Iron	19	24	5
Magnesium	20	35	15
Zinc	20	28	8

5.4 Which type of graph should the student draw to display these results?

Explain your answer.

[2 marks]

5.5 What conclusion can you draw from the student's results?

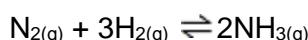

[1 mark]

5.6 **Figure 2** shows the equipment the student used for the investigation.

Figure 2

Explain how the student could have improved the **equipment** used for this investigation.

[4 marks]



6.0 Ammonia is used in the manufacture of fertilisers. The equation for the formation of ammonia (NH_3) from nitrogen (N_2) and hydrogen (H_2) is:

This question refers to the **forward** reaction which is exothermic.

Bond energies for the reaction are given in **Table 1**.

Table 1

Bond	Bond energy in kJ per mole
$\text{N} \equiv \text{N}$	945
$\text{H} - \text{H}$	436
$\text{N} - \text{H}$	390

The structures are shown in **Figure 1**.

Figure 1

6.1 Calculate the overall energy change for the **forward** reaction.

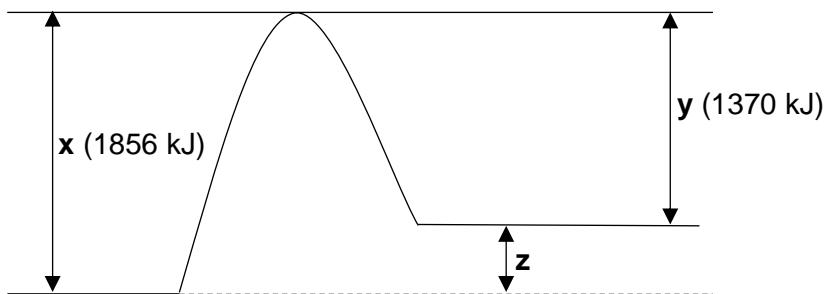
[3 marks]

Overall energy change = _____ J

6.2 Draw an energy level diagram for the **forward** reaction

Mark on the energy level diagram:

- Nitrogen (N_2)
- Hydrogen (H_2)
- Ammonia (NH_3)
- the activation energy
- the overall energy change.


[5 marks]

7.0 Water decomposes to form hydrogen and oxygen.

The equation for the reaction is:

The reaction profile for this reaction is shown below.

7.1 Explain the significance of **x**, **y** and **z** in the reaction profile in terms of energy transfers that occur in the reaction.

In your answer make reference to:

- the substances involved
- the bonds broken and formed
- the overall energy transfer

[6 marks]

MARK SCHEME

Qu No.		Extra Information	Marks
1.1	any one from: • there was a flame • (white) smoke was formed • the magnesium turned into a (white) powder		1
1.2	activation energy		1

Qu No.		Extra Information	Marks
2.1	thermometer		1
2.2	15 °C		1
2.3	31500 (J)	Allow ecf from 2.1 Allow 1 mark for $500 \times 4.2 \times 15$ or $500 \times 4.2 \times$ (ans 2.1)	2

Qu No.		Extra Information	Marks
3.1	take two measurements of temperature (at beginning and end) temperature would increase		1 1
3.2	any one from: • eye protection • lab coat • (long) hair tied back • secure the test tube		1
3.3	any one from: • magnesium completely disappears • bubbles stop appearing	Do not allow dissolves	1

Qu No.		Extra Information	Marks
4.1	all 7 points plotted correctly straight line through first 5 points straight line through last three points	Allow 5/6 points plotted correctly for 1 mark	2 1 1
4.2	20 °C	Allow value read from correct extrapolation of the drawn line of best fit	1
4.3	Room temperature		1

Qu No.		Extra Information	Marks
5.1	Type of metal	Allow metal	1
5.2	Temperature <u>change</u>		1
5.3	Any two from: • Volume of copper sulfate solution • Concentration of copper sulfate solution • Mass of metal used • Starting temperature		2
5.4	Bar Chart (because the independent) variable is categoric / discrete		1 1
5.5	The more reactive the metal the higher the temperature change	Allow wteo "Mg releases more heat than Zn, then Iron" (i.e. refer to all three metals in a sequence)	1
5.6	Used a lid To reduce heat loss or to improve insulation Used a thermometer with a higher resolution. To measure the temperature change more accurately	Allow insulate outside of beaker Allow measure to the nearest 0.5 °C or 0.1 °C	1 1 1 1
Qu No.		Extra Information	Marks
6.1	(energy taken in) = $945 + (3 \times 436)$ = 2253 (kJ) (energy given out) = $6 \times 390 = 2340$ (kJ) (energy change) $2253 - 2340 = (-) 87$ (kJ)	Allow ecf from step 1/ 2 Correct answer with/without working gains 3 marks.	1 1 1
6.2	Reactant energy higher than the product energy Curve for the reaction correctly drawn Nitrogen and hydrogen shown as reactants and ammonia as a product Activation energy correctly labelled Energy change correctly labelled	Allow 2253 kJ (or value obtained by student) correctly shown on graph Allow (-) 87 kJ (or value obtained by student) correctly shown on graph	1 1 1 1 1

Qu No.	Extra Information	Marks
7.1		
Level 3:	A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.	5-6
Level 2:	An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. Links are made but may not be fully articulated and / or precise.	3-4
Level 1:	Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.	1-2
Level 0:	No relevant content	0
Indicative content		
Substances		
<ul style="list-style-type: none"> reactant is water products are oxygen and hydrogen 		
significance of x, y and z		
<ul style="list-style-type: none"> x is energy required to break the bonds in reactant / water x is activation energy y is the energy released given out when bonds form y is the energy released given out when hydrogen and oxygen form z is difference between x and y z is the overall energy transfer 		
overall energy transfer		
<ul style="list-style-type: none"> $z = 1856 - 1370 = (+)486 \text{ kJ}$ overall, energy is absorbed in the reaction energy required to break existing bonds is greater than the energy released when new bonds form so reaction is endothermic 		