

5-5 Energy Changes – Trilogy

1.0 The **Figure 1** shows magnesium burning in air.

Figure 1

© Charles D Winters/Science Photo Library

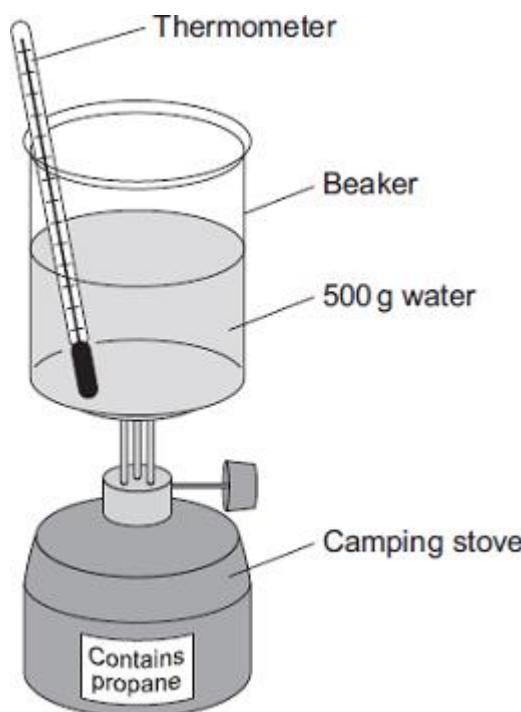
1.1 Give **one** observation that you can make from **Figure 1** that shows that a chemical reaction is taking place.

[1 mark]

1.2 The Bunsen burner flame provides energy to start the magnesium burning.

Draw a ring around the name given to the energy needed to start a chemical reaction.

[1 mark]


Activation energy

Potential Energy

Solar Energy

2.0 A camping stove uses propane gas.

A student investigated the energy released when propane gas is burnt.

The student:

- put 500 g water into a beaker
- recorded the starting temperature of the water
- heated the water by burning propane for 1 minute
- recorded the temperature of the water after burning the propane.

Table 1 shows the student's results for the investigation.

Table 1

Starting temperature of water in °C	Temperature of water after burning propane in °C	Temperature change of water in °C
19	34	

2.1 Calculate the temperature change of the water.

[1 mark]

$$\text{Temperature change} = \underline{\hspace{2cm}}^{\circ}\text{C}$$

2.2 Calculate the energy released in joules when propane is burned for 1 minute.

Use the equation:

$$\text{energy released (J)} = \text{mass of water (g)} \times 4.2 \times \text{temperature change (}^{\circ}\text{C)}$$

[2 marks]

$$\text{Energy released} = \underline{\hspace{2cm}} \text{J}$$

3.0 A student investigated the energy released when different metals react with copper sulfate solution.

3.1 What is the independent variable in this investigation?

[1 mark]

3.2 What is the dependent variable in this investigation?

[1 mark]


3.3 State **two** control variables the student should keep the same.

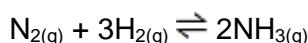
[2 marks]

3.4 **Figure 2** shows the equipment the student used for the investigation.

Figure 2

Explain how the student could have improved the **equipment** used for this investigation.

[4 marks]



4.0 Ammonia is used in the manufacture of fertilisers. The equation for the formation of ammonia (NH_3) from nitrogen (N_2) and hydrogen (H_2) is:

This question refers to the **forward** reaction which is exothermic.

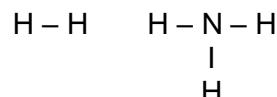

Bond energies for the reaction are given in **Table 1**.

Table 1

Bond	Bond energy in kJ per mole
$\text{N} \equiv \text{N}$	945
$\text{H} - \text{H}$	436
$\text{N} - \text{H}$	390

The structures are shown in **Figure 1**.

Figure 1

4.1 Calculate the overall energy change for the **forward** reaction.

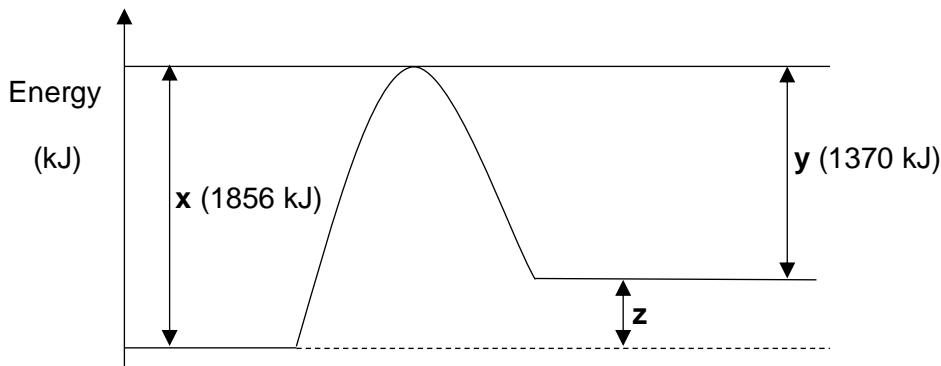
[3 marks]

Overall energy change = _____ J

4.2 Draw an energy level diagram for the **forward** reaction

Mark on the energy level diagram:

- Nitrogen (N_2)
- Hydrogen (H_2)
- Ammonia (NH_3)


[3 marks]

5.0 Water decomposes to form hydrogen and oxygen.

The equation for the reaction is:

The reaction profile for this reaction is shown below.

5.1 Explain the significance of **x**, **y** and **z** in the reaction profile in terms of energy transfers that occur in the reaction.

In your answer make reference to:

- the substances involved
- the bonds broken and formed
- the overall energy transfer

[6 marks]

MARK SCHEME

Qu No.		Extra Information	Marks
1.1	any one from: • there was a flame • (white) smoke was formed • the magnesium turned into a (white) powder		1
1.2	activation energy		1

Qu No.		Extra Information	Marks
2.1	15 °C		1
2.2	31500 (J)	Allow ecf from 2.1 Allow 1 mark for $500 \times 4.2 \times 15$ or $500 \times 4.2 \times$ (ans 2.1)	2

Qu No.		Extra Information	Marks
3.1	Type of metal	Allow metal	1
3.2	Temperature <u>change</u>		1
3.3	Any two from: • Volume of copper sulfate solution • Concentration of copper sulfate solution • Mass of metal used • Starting temperature		2
3.4	Used a lid To reduce heat loss or to improve insulation Used a thermometer with a higher resolution. To measure the temperature change more accurately	Allow insulate outside of beaker Allow measure to the nearest 0.5 °C or 0.1 °C	1 1 1 1

Qu No.		Extra Information	Marks
4.1	$(\text{energy taken in}) = 945 + (3 \times 436) = 2253 \text{ (kJ)}$ $(\text{energy given out}) = 6 \times 390 = 2340 \text{ (kJ)}$ (energy change) $2253 - 2340 = (-) 87 \text{ (kJ)}$	Allow ecf from step 1/ 2 Correct answer with/without working gains 3 marks.	1 1 1
4.2	Reactant energy higher than the product energy Curve for the reaction correctly drawn Nitrogen and hydrogen shown as reactants and ammonia as a product		1 1 1

Qu No.	Extra Information	Marks
5.1		
Level 3:	A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.	5-6
Level 2:	An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. Links are made but may not be fully articulated and / or precise.	3-4
Level 1:	Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.	1-2
	No relevant content	0
Indicative content		
Substances		
<ul style="list-style-type: none"> reactant is water products are oxygen and hydrogen 		
significance of x, y and z		
<ul style="list-style-type: none"> x is energy required to break the bonds in reactant / water x is activation energy y is the energy released given out when bonds form y is the energy released given out when hydrogen and oxygen form z is difference between x and y z is the overall energy transfer 		
overall energy transfer		
<ul style="list-style-type: none"> $z = 1856 - 1370 = (+)486 \text{ kJ}$ overall, energy is absorbed in the reaction energy required to break existing bonds is greater than the energy released when new bonds form so reaction is endothermic 		