

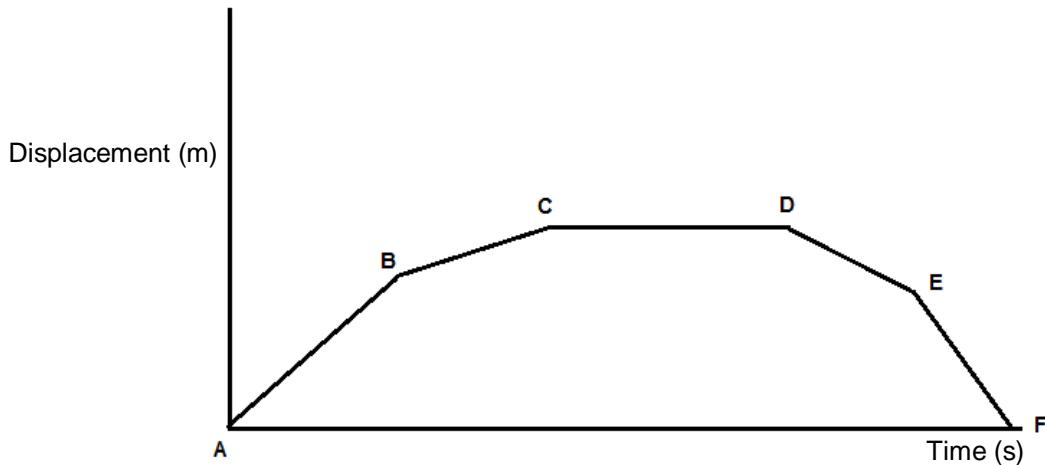
6-5 Forces – Trilogy

1.0 The distance taken for a car to stop after an emergency depends on two things:

The thinking distance: how far the car travels while the driver processes the information.

The braking distance: how far the car travels after the driver presses the break.

1.1 Each distance is affected by different factors.


Tick the boxes to show whether each factor affects the thinking distance, the braking distance or both.

[2 marks]

Factor	Thinking distance	Braking distance	Both
Speed of car			
Water on road			
Driver's tiredness			
Driver's alcohol consumption			
Condition of car's brakes			

1.2 Figure 1 shows part of a displacement-time graph of a car journey.

Figure 1

Complete the gaps with letters from the diagram.

[4 marks]

The car was moving forwards between ____ and ____.

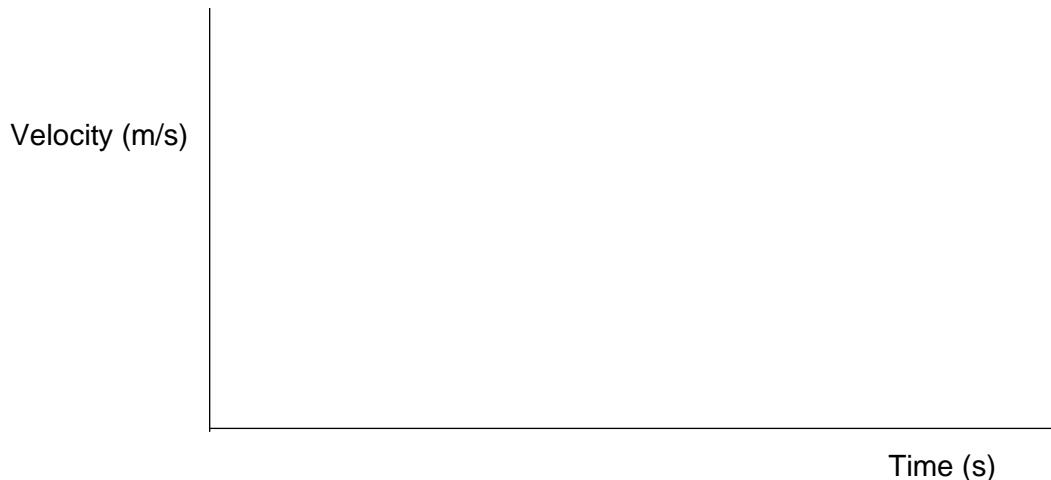
The car was stationary between ____ and ____.

The car is moving slowest between ____ and ____.

The car was moving backwards between ____ and ____.

1.3 What is the difference between speed and velocity?

Put ticks in the boxes.

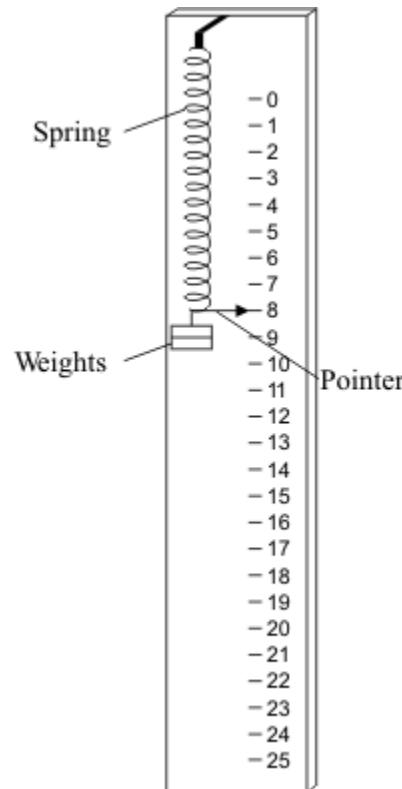

[2 marks]

	Speed	Velocity
Has size		
Has direction		
Scalar		
Vector		

1.4 On the axes below, draw a **velocity-time** graph for a car that:

- Moves at constant velocity
- Slows down
- Stops

[3 marks]



2.0 A student wants to measure the spring constant of a spring.

The equipment she uses is shown in **Figure 2**.

The scale measures distance in cm.

Figure 2

2.1 Explain why the mark for 0 cm is slightly below the top of the spring in the **Figure 2**.

[1 mark]

2.2 As the student carries out the experiment, her head moves slightly up and down when taking readings.

State the type of error this movement would have caused.

[1 mark]

2.3 How does the pointer make the measurement of length more **accurate**?

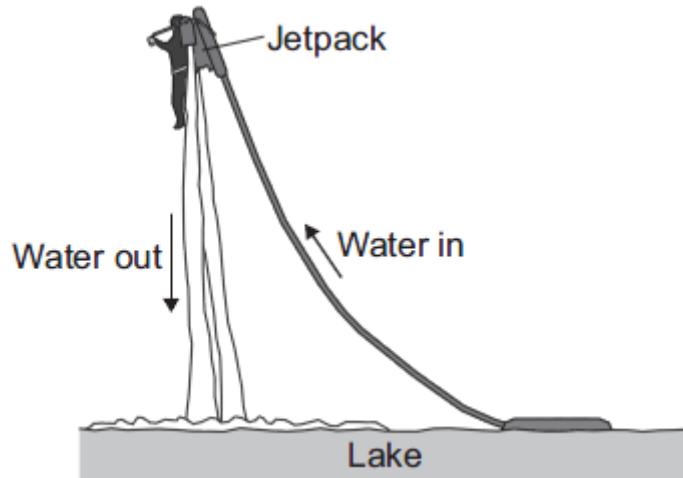
[1 mark]

2.4 Explain how the student could use the equipment in **Figure 2** to measure the spring constant of the spring.

[4 marks]

2.5 The student found that the spring constant of the spring was 15.6 N/m.

Calculate the extension of the spring if the energy stored in it was 1.95 J.


Give your answer to 2 significant figures.

[3 marks]

Extension = cm

3.0 **Figure 3** shows a person using a device called a jetpack. Water is forced downwards from the jetpack and produces an upwards force on the person.

Figure 3

3.1 Explain why the jetpack moves upwards when water is forced downwards.

Include reference to the relevant law of physics in your answer.

[3 marks]

3.2 Read the following information.

Combined mass of jetpack and person	84 kg
Upwards force from water	1900 N
Starting velocity	0.0 m/s
Acceleration due to gravity, g	9.8 m/s ²

Calculate the maximum speed the person reaches after moving 5 m upwards.

In your answer:

- Calculate the combined weight of the jetpack and person
- Calculate the resultant force on the jetpack
- Calculate the acceleration of the jetpack and person
- Use $v^2 = u^2 + 2as$ to calculate the maximum velocity of the person.

Use two significant figures at each step in your calculation.

Show your working.

[6 marks]

Maximum velocity = _____ m/s

MARK SCHEME

Qu No.					Extra Information	Marks
1.1	Factor	Thinking distance	Braking distance	Both	Allow ticks in Thinking distance and Braking distance instead of both. All five ticks correct: 2 marks 3 or 4 ticks correct: 1 mark	2
	Speed of car			✓		
	Water on road		✓			
	Driver's tiredness	✓				
	Driver's alcohol consumption	✓				
	Condition of car's brakes		✓			
1.2	A and C C and D B and C D and F				Both points required for each mark.	1 1 1 1
1.3	Speed	Velocity			1 mark for Speed 1 mark for Velocity	2
	Has size	✓	✓			
	Has direction		✓			
	Scalar	✓				
	Vector		✓			
1.4	Horizontal line above the x axis Line drops to x axis Line continues along x axis				Allow curved or straight line. Do not allow vertical line	1 1 1

Qu No.	Extra Information	Marks
2.1	To allow for size of spring / to measure extension of the spring	1
2.2	Random error	1
2.3	Easier to read the scale / smaller parallax	1
2.4		
Level 2:	A detailed and coherent description of how to measure the spring constant. Answer includes multiple measurements and uses the gradient of a graph.	3-4
Level 1:	A simple description of how to measure the spring constant. Likely to only include one reading and make reference to $F = kx$.	1-2
	No relevant content	0

Indicative content

	Change weight on spring Measure extension for each weight Reference to table of results Plot graph of extension (y-axis) against weight (x-axis) (or vice versa) Gradient is 1 / spring constant (or gradient is spring constant if axes swapped) Reference to $F = kx$ / Hooke's law	
2.5	$x = \sqrt{\frac{E}{0.5 k}}$ $= \sqrt{\frac{1.95}{7.8}}$ $= 0.5 \text{ m} / 50 \text{ cm}$	Allow 2 marks for an answer of 0.25 m / 25cm (student has forgotten to square root) Award 2 marks for 50 cm Award 2 marks for correct answer to more than 2 significant figures.

Qu No.	Extra Information	Marks
3.1	Newton's third law Jetpack forces the water down So water exerts an <u>equal</u> (magnitude) <u>and opposite</u> (direction) force on the jetpack (so it moves up)	1 1 1
3.2	Combined weight = $84 \times 9.8 = 820 \text{ N}$ Resultant force = $1900 - 820 = 1100 \text{ N}$ Acceleration = $F/m = 1100 / 84$ $= 13 \text{ m/s}^2$ $v^2 = u^2 + 2as = 0 + 2 \times 13 \times 5 = 130$ $v = 11 \text{ m/s}$	1 1 1 1 1 1 1